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Loss to follow-up example 1

A C

L

U

Y

Factorisation according to the DAG with ordering hA,U, L,C ,Y i:

p(y , c , l , u, a) = p(y | u, a)p(c | l , a)p(l | u)p(u)p(a)

But how do we use this factorization to identify causal e↵ects?
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A clinical story

Suppose the graph on Slide 163 represents a study of HIV-positive
individuals to estimate the e↵ect of an antiretroviral treatment A on 3-year
risk of death Y .

The unmeasured variable U 2 {0, 1} indicates high level of
immunosuppression. Those with U = 1 have a greater risk of death.

Individuals who drop out from the study or are otherwise lost to follow-up
are censored (C = 1).

Individuals with U = 1 are more likely to be censored because the severity of
their disease prevents them from participating in the study.

The e↵ect of U on censoring C is mediated by the presence of symptoms
(fever, weight loss, diarrhea, and so on), CD4 count, and viral load in
plasma, all included in L, which we suppose are measured.

Individuals receiving treatment are at a greater risk of experiencing side
e↵ects, which could lead them to dropout, as represented by the arrow from
A to C . We have to restrict the analysis to individuals who remained
uncensored (C = 0) because those are the only ones in which Y can be
assessed.
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Backdoor theorem in the example on loss to follow-up

Consider the example from Slide 163.

Note that
L blocks all backdoor paths between (A,C ) and Y .
Thus,

E(Y a,c=0) =
X

l

E(Y | A = a,C = 0, L = l)P(L = l),

which can be estimated simply by standardisation:
Estimate E(Y | A = a,C = 0, L = l) by Ê(Y | A = a,C = 0, L = l),
Estimate P(L = l) empirically.

The standardisation estimator is:
1

n Ê(Y
a,c=0) =

P
i Ê(Y | A = a,C = 0, L = Li )
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PS: Many causal questions are more di�cult

Realistic questions are often more di�cult. Consider for example:

when should we start a treatment?

How long should we continue treatment?

When to switch to di↵erent treatment?

What event should guide us to switch treatment?
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PS: Many causal questions are more di�cult

Realistic questions are often more di�cult. Consider for example:

when should we start a treatment?

How long should we continue treatment?

When to switch to di↵erent treatment?

What event should guide us to switch treatment?

We will discuss such questions later in the course
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Elephant in the room...

In a randomised study, the following graph is a causal DAG:

A Y

And we know that Y a ?? A for a 2 {0, 1}.
But the counterfactual independence cannot be read o↵ from the graph!
This raises some questions:

Can we construct graphs to read o↵ such counterfactual
independencies?

Can we read o↵ factorisations of counterfactual laws from graphs?
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D-separation allows us to read o↵ whether an association
is causal

We can graphically check – using d-separation – whether an observed
association between two variables A and B conditional on C is (solely) due
to a causal e↵ect (i.e. that the association is unconfounded).

However, we also want to use graph to evaluate if we can identify
functionals of counterfactual variables, for example E(Y a). We can use the
backdoor theorem for this task, but the elephant in the room is that there
are no counterfactual variables on the DAG! And we did want to reason
about counterfactual independencies. Thus, whereas we can evaluate
independencies between factual variables in a DAG, we cannot study
counterfactual independencies.

Here we will study a recent and elegant23 transformation of the DAG – the
so-called Single World Intervention Graph (SWIG) – that does allow us to
read o↵ independencies between factual and counterfactual variables.

23Thomas S Richardson and James M Robins. “Single world intervention graphs
(SWIGs): A unification of the counterfactual and graphical approaches to causality”. In:
Center for the Statistics and the Social Sciences, University of Washington Series.

Working Paper 128.30 (2013).
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Section 21

Single World Intervention Graphs (SWIGs)
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Creation of SWIGs

The SWIG G(a) is created as follows:

1 Draw the DAG that represents the causal model.
2 Split treatment variables into two nodes (indicated by semi-circles),

left and right.
The left node encodes the random variable treatment that would have
been observed in the absence of an intervention. This is called the
natural value of treatment node. Natural value of treatment nodes
should be treated as nodes of an ordinary DAG, i.e., ordinary random
variables.
The right node encodes the value of treatment under the intervention.
These nodes should be treated as constants, i.e. fixed nodes.

3 Re-label every non-manipulated descendant of an intervention node
with superscript: the superscripts indicate the counterfactual.

Use consistency to obtain graphs with minimal labelling, i.e. the
minimal set of counterfactuals in the superscript.

The SWIG can be conceived as a function that transforms the original
causal DAG into a new graph, which is still (formally) a DAG.

Mats Stensrud Causal Thinking Autumn 2023 171 / 400



Example: SWIG in a simple randomised trial

SWIG under treatment a = 1:

A Y A a = 1 Y
a=1

We can read the independence Y
a=1 ?? A.

We also associate the new factorisation:

P(A = a
0,Y a=1 = y) = P(A = a

0)P(Y a=1 = y),

where we omit the fixed nodes from the conditioning set. Furthermore, we
make a modularity assumption

P(Y a=1 = y) = P(Y = y | A = 0),

which links the original factorisation to the original DAG factorisation.
This modularity assumption is indeed implied by the consistency
assumption, which is in turn implied by independent error assumption in
the NPSEM-IE.
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Single world

We can read the independence Y
a=1 ?? A from the SWIG for treatment a = 1:

A Y A a = 1 Y
a=1

We can read the independence Y
a=0 ?? A from the SWIG for treatment a = 0:

A Y A a = 0 Y
a=0

Why do we need both graphs? These are two di↵erent graphs that represent the
factorisation of di↵erent margins: P(A = a

0,Y a=1 = y) and P(A = a
0,Y a=0 = y).

None of the SWIGs encodes assumptions between counterfactuals from di↵erent
worlds Y a=0 and Y

a=1. This is a feature, not a bug.
It has to do with identification. Node splitting preserves identification. If I
observe every node that I included in the original DAG, then the counterfactual
laws defined by the node splittings are also going to be identified.
For example, if in the DAG above P(A = a

0,Y = y) is identified, then
P(A = a

0,Y a=1 = y) is identified and so is P(A = a
0,Y a=0 = y), but not

P(A = a
0,Y a=1 = y

0,Y a=0 = y).
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Factorisation

Definition (SWIG factorisation)

The factorisation associated with a SWIG is

P(V a = v) =
Y

Vi2V
P(V ai

i = vi | (PAG(a),i \ a) = q)

where q ✓ pai ⇢ v and ai ✓ a (ai are the elements of a that are ancestors
of Vi ).
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Modularity

Definition (Modularity)

The DAG pair (G, p(v)) and the SWIG pair (G(a), pa(v)) under an intervention
that sets A = (A0, . . . ,Ak) to a = (a0, . . . , ak) satisfy modularity for every Vi 2 V

if

P(V ai
i = vi | (PAG(a),i \ a) = q)

=P(Vi = vi | (PAG,i \ A) = q, (PAG,i \ A) = aPAG,i\A)

This definition looks like a mouthful, but it is conceptually quite easy to
understand. It bridges counterfactual densities to observable densities.
It is implied by the independent error assumption of the NPSEM-IE, and it holds
under a weaker causal model, the FFRCISTG24 (I have not shown this).

24Richardson and Robins, “Single world intervention graphs (SWIGs): A unification of
the counterfactual and graphical approaches to causality”.
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Causal models, factorisation and modularity

Theorem

A NPSEM-IE model (and the FFRCISTG model that includes the

NPSEM-IE model as a strict submodel) obeys factorisation and modularity.

We will not prove this result, but we will use it extensively.
In our saturated graph when we intervene to set a = 1, it implies that
P(Y a=1 = y) = P(Y = y | A = 1).
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D separation of a path in a SWIG)

This definition is very similar to the definition in DAGs:

Definition (d-separation of a path)

A path r is d-separated by a set of nodes Z i↵

1 r contains a chain Vi ! Vj ! Vk or a fork Vi  Vj ! Vk such that
Vj is in Z , or

2 r contains a collider Vi ! Vj  Vk such that Vj is not in Z and such
that no descendant of Vj is in Z .

If a path is not d-separated by Z and there is no fixed node on the path,
then the path is d-connected given Z .
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SWIT in a simple randomised trial (experiment)

A SWIT is a SWIG template25, i.e. a graph valued function:

It takes a specific value a as input.

Returns a SWIG G (a).

SWIG G (0) represents p(A = a
0,Y a=0 = y).

SWIG G (1) represents p(A = a
0,Y a=1 = y).

A Y A a Y
a

The SWIT represents both the SWIGs from the previous slide. Hereafter
we will use SWITs for simplicity, most of the time.

25Note that I am sometimes sloppy and use the word SWIG when I formally talk
about a SWIT.
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SWIG in a conditional randomised experiment

L A Y A aL Y
a

P(Y a = y) =
X

l

P(Y a = y | L = l)P(L = l) factorization

=
X

l

P(Y = y | A = a, L = l)P(L = l). modularity
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SWIG in an experiment with loss to follow-up (C)

A is treatment, C is censoring. The counterfactual outcome Y
a,c=0 is the

outcome if we kept every individual uncensored (c = 0) under treatment a.

A C

L

Y

A a C
a

c = 0

L

Y
a,c=0

Message: collecting L is good, even in a randomised experiment...Mats Stensrud Causal Thinking Autumn 2023 180 / 400



SWIG in an experiment with imperfect adherence

R is the strategy that was assigned, and A denotes taking treatment.
Here, the counterfactual in the SWIG is the outcome had the patient taken
treatment a. The lack of an arrow from R to Y

a encodes the assumption
that randomisation only causes the outcome through the treatment A.

R A

L

Y A a

L

Y
a

R
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SWIG in an experiment with imperfect adherence

R is the strategy that was assigned, and Ak denotes taking treatment at
time k 2 {0, 1}.

R A0 A1

L

Y

A0 a0 A
a0
1

a1

L

Y
a0,a1R

Lhy no arrow from R to Y ?
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SWIG in an experiment with imperfect adherence

R is the strategy that was assigned, and Ak denotes taking treatment at
time k 2 {0, 1}.

R A0 A1

L0 L1

Y

A0 a0 A
a0
1

a1

L0

Y
a0,a1

L
a0
1

R
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SWIG and independencies

These graphs illustrate minimal labelling (La0
1

= L1). The first graph is not
minimally labelled, but encodes the same information as the second graph which
is minimally labelled.

A0 a0 A
a0
1

a1

H

Y
a0,a1L

a0
1

A0 a0 A
a0
1

a1

H

Y
a0,a1L1
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SWIG criterion for identification of e↵ects

Consider the observed random variables AK , LK ,Y .

Definition (g-formula)

The g-formula for the marginal of Y ⌘ YK under treatment assignment
a = aK = (a0, . . . , aK ) is defined as

ba(y) =
X

lK

p(y | lK , aK )
KY

j=0

p(lj | l j�1, aj�1),

where lk = (l0, . . . , lk), k  K , are instantiations of observed variables
Lk = (L0, . . . , Lk), k  K .

We define variables with subscript ”�1”, e.g. L�1, are empty.
26

26Robins, “A new approach to causal inference in mortality studies with a sustained
exposure period—application to control of the healthy worker survivor e↵ect”;
Richardson and Robins, “Single world intervention graphs (SWIGs): A unification of the
counterfactual and graphical approaches to causality”.
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Su�cient condition for identification

Theorem (Identification of static regimes)

Consider an intervention that sets a = aK = (a0, . . . , aK ). Under positivity and

consistency,

P(Y a = y) = ba(y)

if for k 2 {0, . . . ,K}

Y
a ?? I (Ak = ak) | L0, . . . , Lk ,A0 = a0, . . . ,Ak�1 = ak�1.

This theorem follows from Robins27 and Richardson and Robins28, and is closely related
to the backdoor theorem of Pearl29.
The theorem establishes when we can use the g-formula to identify causal e↵ects.

27Robins, “A new approach to causal inference in mortality studies with a sustained
exposure period—application to control of the healthy worker survivor e↵ect”.

28Richardson and Robins, “Single world intervention graphs (SWIGs): A unification of
the counterfactual and graphical approaches to causality”.

29Pearl, “Causal diagrams for empirical research”.
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Proof in a simple case

Consider the case with two treatments (A0,A1) and a binary outcome
Y 2 {0, 1}. Suppose that Y a0,a1 ?? A0 and Y

a0,a1 ?? A1 | L1,A0 = a0

Proof.

E(Y a0,a1) =E(Y a0,a1 | A0 = a0) exchangeability

=
X

l1

E(Y a0,a1 | L1 = l1,A0 = a0)p(l1 | a0)

=
X

l1

E(Y a0,a1 | A1 = a1, L1 = l1,A0 = a0)p(l1 | a0) exchangeability

=
X

l1

E(Y | A1 = a1, L1 = l1,A0 = a0)p(l1 | a0) consistency, positivity
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Comments to the g-formula

The independence condition in the identification theorem cannot be
read directly o↵ of a SWIG. However, on the next slide we see how the
identification condition is implied by an independence in the SWIG.

Importantly, the g-formula allows identification in the presence of
unmeasured variables.
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Reading o↵ independencies in SWIGs

Let H be a hidden (unmeasured) variable

A0 a0 A
a0
1

a1

H

Y
a0,a1L

a0
1

We can read o↵ Y
a0,a1 ?? A

a0
1

| La0
1
,A0.

However, what we needed for using the g-formula is the independence
Y

a0,a1 ?? A1 | L1,A0 = a0.
Use consistency: Aa0

1
| La0

1
,A0 = a0 is equal to A1 | L1,A0 = a0, i.e.,

Y
a0,a1 ?? A

a0
1

| La0
1
,A0 =) Y

a0,a1 ?? A1 | L1,A0 = a0.
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Using the identification theorem

Thus, we can identify the expected counterfactual outcome under the
intervention that sets A0 = a0 and A1 = a1 in the graph in Slide 189 as

E(Y a0,a1) =
X

l1

E(Y | A1 = a1, L1 = l1,A0 = a0)P(L1 = l1 | A0 = a0).

Note that we have identified the counterfactual as a function of only the
observed variables in the graph, even if there is a hidden variable H in the
graph.
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Additional SWIG

A0 a0 A
a0
1

a1

H1 H2

Y
a0,a1L

a0
1

What is the g-formula? Compare to Figure 189. Indeed, the g-formula is
just a function of observed data distributions, but here it does not identify
the causal estimand because the identification conditions are violated.
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Some insights

We have studied identification from an ”all or nothing” perspective.
We will later look at sensitivity analyses and bounds.

The identification assumptions we have studied are non-parametric
(PS: I consider this to be a feature, not a bug). We have not
considered other assumptions that also can be used to justify
identification, for example

monotone e↵ects.
no e↵ect modification.

We have not learned the graphical structure. On the other hand, we
have learned what we can infer from a given graphical structure;
heuristically, we encode what we know and believe in the graph, and
then we deduce what we can learn from this knowledge and
assupmtions.

Learning the graphical structure itself from data is a very ambitious
task.
In principle, the causal structure could be learned by doing a large
amount of experiments (I am not discussing this in more detail here).
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Berkson bias

A

L

Y

Q W

A Drink a glass of red wine a day.

Y Nausea

L Aspirin

Q Family history of cardiovascular disease

W Frequency of headache

Q: We measure Aspirin. Should we adjust for Aspirin in the analysis?
Draw the SWIG...
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